13,503 research outputs found

    The Skylab concentrated atmospheric radiation project

    Get PDF
    The author has identified the following significant results. Comparison of several existing infrared radiative transfer models under somewhat controlled conditions and with atmospheric observations of Skylab's S191 and S192 radiometers illustrated that the models tend to over-compute atmospheric attenuation in the window region of the atmospheric infrared spectra

    Behavior of shell-model configuration moments

    Full text link
    An important input into reaction theory is the density of states or the level density. Spectral distribution theory (also known as nuclear statistical spectroscopy) characterizes the secular behavior of the density of states through moments of the Hamiltonian. One particular approach is to partition the model space into subspaces and find the moments in those subspaces; a convenient choice of subspaces are spherical shell-model configurations. We revisit these configuration moments and find, for complete 0ℏω0\hbar\omega many-body spaces, the following behaviors: (a) the configuration width is nearly constant for all configurations; (b) the configuration asymmetry or third moment is strongly correlated with the configuration centroid; (c) the configuration fourth moment, or excess is linearly related to the square to the configuration asymmetry. Such universal behavior may allow for more efficient modeling of the density of states in a shell-model framework.Comment: 12 pages, 8 figure

    The electronic structure and localized molecular orbitals in S<SUB>4</SUB>N<SUB>4</SUB> by the CNDO/BW theory

    Get PDF
    The energies calculated for tetranitrogen tetrasulfide, S4N4, by the CNDO/BW theory favor a structure with coplanar nitrogen atoms and not a structure with coplanar sulfur atoms. Both structures have been proposed from experimental studies. Localized molecular orbitals are calculated for S4N4 and used to choose the appropriate Lewis structure for the molecule. The hybridization at the nitrogen and sulfur atoms is discussed. There is electron delocalization in the molecule, the S-N bond is a bent bond involving pure p-orbitals on the sulfur and nitrogen atoms and there is a pure p-bent bond between the sulfur atoms on the same side of the coplanar nitrogen atoms. There is no N-N bond in S4N4

    Dynamical Spin Response Functions for Heisenberg Ladders

    Full text link
    We present the results of a numerical study of the 2 by L spin 1/2 Heisenberg ladder. Ground state energies and the singlet-triplet energy gaps for L = (4-14) and equal rung and leg interaction strengths were obtained in a Lanczos calculation and checked against earlier calculations by Barnes et al. (even L up to 12). A related moments technique is then employed to evaluate the dynamical spin response for L=12 and a range of rung to leg interaction strength ratios (0 - 5). We comment on two issues, the need for reorthogonalization and the rate of convergence, that affect the numerical utility of the moments treatment of response functions.Comment: Revtex, 3 figure

    Scaling ansatz, four zero Yukawa textures and large θ13\theta_{13}

    Full text link
    We investigate 'Scaling ansatz' in the neutrino sector within the framework of type I seesaw mechanism with diagonal charged lepton and right handed Majorana neutrino mass matrices (MRM_R). We also assume four zero texture of Dirac neutrino mass matrices (mDm_D) which severely constrain the phenomenological outcomes of such scheme. Scaling ansatz and the present neutrino data allow only Six such matrices out of 126 four zero Yukawa matrices. In this scheme, in order to generate large θ13\theta_{13} we break scaling ansatz in mDm_D through a perturbation parameter and we also show our breaking scheme is radiatively stable. We further investigate CP violation and baryogenesis via leptogenesis in those surviving textures.Comment: 25 pages, 8 figures, Accepted for publication in Phys. Rev.

    Primitive Words, Free Factors and Measure Preservation

    Full text link
    Let F_k be the free group on k generators. A word w \in F_k is called primitive if it belongs to some basis of F_k. We investigate two criteria for primitivity, and consider more generally, subgroups of F_k which are free factors. The first criterion is graph-theoretic and uses Stallings core graphs: given subgroups of finite rank H \le J \le F_k we present a simple procedure to determine whether H is a free factor of J. This yields, in particular, a procedure to determine whether a given element in F_k is primitive. Again let w \in F_k and consider the word map w:G x G x ... x G \to G (from the direct product of k copies of G to G), where G is an arbitrary finite group. We call w measure preserving if given uniform measure on G x G x ... x G, w induces uniform measure on G (for every finite G). This is the second criterion we investigate: it is not hard to see that primitivity implies measure preservation and it was conjectured that the two properties are equivalent. Our combinatorial approach to primitivity allows us to make progress on this problem and in particular prove the conjecture for k=2. It was asked whether the primitive elements of F_k form a closed set in the profinite topology of free groups. Our results provide a positive answer for F_2.Comment: This is a unified version of two manuscripts: "On Primitive words I: A New Algorithm", and "On Primitive Words II: Measure Preservation". 42 pages, 14 figures. Some parts of the paper reorganized towards publication in the Israel J. of Mat

    Effective Interaction Techniques for the Gamow Shell Model

    Get PDF
    We apply a contour deformation technique in momentum space to the newly developed Gamow shell model, and study the drip-line nuclei 5He, 6He and 7He. A major problem in Gamow shell-model studies of nuclear many-body systems is the increasing dimensionality of many-body configurations due to the large number of resonant and complex continuum states necessary to reproduce bound and resonant state energies. We address this problem using two different effective operator approaches generalized to the complex momentum plane. These are the Lee-Suzuki similarity transformation method for complex interactions and the multi-reference perturbation theory method. The combination of these two approaches results in a large truncation of the relevant configurations compared with direct diagonalization. This offers interesting perspectives for studies of weakly bound systems.Comment: 18 pages, 17 figs, Revtex
    • …
    corecore